LUAS SEGI-n BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN
Nabila : Nabila Nurul Alifah
Kelas : X MIPA 1
Absen : 17
LUAS SEGI-n BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN
Luas Bangun Datar Segi n Beraturan
Untuk menghitung luas pada segi n beraturan dapat dilakukan dengan menggunakan rumus luas segitiga dengan aturan sinus di dalamnya. Adapun rumus segitiganya yaitu meliputi:
Luas Segitiga = ½.r.r.sin θ = ½ r² sin 360°/n
Rumus luas segitiga menggunakan aturan sinus di atas dapat digunakan untuk menghitung luas pada segi n beraturan. Adapun rumus luas segi n beraturan yaitu sebagai berikut:
Luas segi n = n × Luas Segitiga
Luas segi n = n/2 r² sin 360°/n
Keliling Bangun Datar Segi n Beraturan
Selain rumus luas bangun datar segi n beraturan di atas, adapula rumus keliling segi n beraturan. Panjang segi n (x) dapat dihitung menggunakan aturan kosinus. Panjang x menurut aturan kosinus dalam segitiga PRQ dapat dihitung dengan persamaan seperti di bawah ini:
Dari persamaan di atas dapat diperoleh rumus keliling segi n beraturan seperti di bawah ini:
Keterangan:
θ = Sudut pusat yang besarnya 360º/n
Contoh Soal Luas dan Keliling Segi n Beraturan
Setelah menjelaskan tentang rumus luas segi n beraturan dan rumus keliling segi n beraturan di atas. Selanjutnya saya akan membagikan contoh soal segi n beraturan seperti di bawah ini:
1. Tentukan luas dan keliling segi enam beraturan yang jari jarinya memiliki panjang 20 cm?
Pembahasan.
Contoh soal tersebut dapat diselesaikan dengan rumus segi n beraturan seperti di bawah ini:
n = 6 (karena bentuknya segienam)
r = 20 cm
Sehingga,
Luas segienam = n/2 r² sin 360°/n
= 6/2 20² sin 360°/6
= 600 sin 60
= 600 ½√3
= 300√3 cm²
Keliling = nr √(2 – 2 cos 360°/n)
=6.20 √(2 – 2 cos 360°/6)
= 120 √(2 – 2.½)
= 120 √(2 -1)
= 120 √1
= 120 cm
Jadi luas dan keliling segi enam beraturan 300√3 cm² dan 120 cm.
2. Bangun datar segi 12 beraturan memiliki besar luas 48 cm². Maka tentukan:
a. Panjang sisi dan panjang jari jari
b. Keliling segi 12 beraturan
Pembahasan.
a. Contoh soal segi n beraturan tersebut dapat diselesaikan dengan rumus tertentu. Adapun rumus luas segi n beraturan yaitu sebagai berikut:
Luas Segi 12 = n/2 r² sin 360°/n
48 = 12/2 r² sin 360°/12
48 = 6r² sin 30
48 = 6r² ½
48 = 3r²
r² = 16
r = 4 cm
Maka,
Panjang sisi segi 12 = r√(2 – 2 cos 360°/n)
= 4√(2 – 2 cos 360°/12)
= 4√(2 – 2 cos 30°)
= 4√(2 – 2.½√3)
= 4√(2 – √3)
b. Selanjutnya menggunakan rumus keliling segi n beraturan dengan beberapa langkah seperti di bawah ini:
Keliling = n.x
= 12.4√(2 – √3)
= 48√(2 – √3)
JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA
Rumus Jari-jari Lingkaran Dalam dan Lingkaran Luar Segitiga
Kali ini kita akan belajar tentang lingkaran dalam dan lingkrang luar dari sebuah segitiga. Materi dan rumus ini akan sobat jumpai di kelas 8 SMP maupun di kelas 3 SMA. Kita akan belajar bagaimana mencari jari-jari dan luas lingkaran dalam dan lingkaran luar segitiga. Jika sudah ketemu jari-jarinya, untuk mencari luas segitiganya sobat tinggal memasukkannya ke rumus luas lingkaran
L = Phi r2
Lingkaran Dalam Segitiga
Sebuah lingkaran dapat sobat buat dalam sebuah segitiga. Caranya, buatlah garis bagi simetris dari masing-masing segitiga. Garis bagi adalah garis yang membagi sudut segitia tersebut sama besar (Bagaiaman cara membuat garis bagi akan kita bahas nanti). Dari titik perpotongan ketiga garis bagi tersebut dapat dibuat sebuah lingkaran. Titik potong ketiga garis bagiakan menjadi pusat lingkaran dan kelilingnya akan tepat menyinggung masing-masing sisi segitiga.
Jari-Jari Lingkaran dalam
——————- = 1/2 (AB x OD) + 1/2 ( CB x OE) + 1/2 (AC x OF)
——————- = 1/2 (AB x r) + 1/2 (CB x r) + 1/2 (AC x r)
——————- = 1/2 r (AB + CB + C)
——————- = 1/2. r. Keliling Segitiga (setengah keliling bisa dilambangkan dengan s?)
——————- = r. S
Jadi
L = r . S
r = L/S
jadi, jari-jari lingkaran dalam dapat dicari dengan membagi luas segitiga dengan 1/2 kelilingnya. Sekarang yang menjadi masalah adalah bagaimana mencari luas segitiganya? Karena segitiga di atas adalah segitiga sembarang sobat bisa menggunakan rumus
Jadi rumus jari-jari lingkaran dalam menjadi:
dengan
L = Luas Segitiga
S = 1/2 keliling Δ = 1/2 (a+b+c)
Rumus di atas tergantung jenis segitiga. Kalau segitiga siku-siku akan lebih enak mencari luasnya dengan rumus 1/2 alas kali tinggi daripada menggunakan s. Baca Rumus Lengkap Berbagai Bentuk Segitiga.
Lingkaran Luar Segitiga
Lingkaran luar segitiga adalah lingkran yang dibentuk dari perpanjangan garis bagi tiga sisi segitiga dan kelilinya akan tepat menyinggung tiga titi sudut segitiga yang ada di dalamnya. Perhatikan gambar di bawah ini
Pada gambar diatas, terdapat sebuah segitiga ABC dengan dengan sisi a,b, dan c. Ada lingkaran luar yang berpusat di titik O yang mengitari segitiga tersebut. OA, OB, OC. dan OD masing-masing adalah jari-jari lingkaran luar yang akan kita cari rumusnya. Untuk membantu menemukan rumus jari-jari, kita memakai garis bantu yaitu garis tinggi segitiga CT dan garis diameter yang ditarik dari titik C (garis CD).
Coba sobat perhatikan ΔCAD dengan ΔCTB
∠CAD = ∠CTB = 90o (ingat sifat sudut keliling yang menghadap diameter sama dengan 90º)
∠ADC = ∠TBC (ingat bahwa dua sudut keliling yang menghadap busur lingkaran yang sama adalah sama besar)
BC/CD = CT/AC
CD (diameter) = BC x AC / CT
CD (diameter) = a x b / CT……. (persamaan 1)
Nilai CT bisa kita cari dengan persamaan Luas
Luas ΔABC = 1/2 AB x CT
2 Luas ΔABC = AB x CT
CT = 2 Luas ΔABC / AB
CT = 2L/ c……..(persamaan 2)
Kita masukkan persamaan 2 ke persamaan 1
CD = a x b / CT
CD = a x b / (2L/c)
CD = a x b x c / 2L
Jari-jari = 1/2 CD
r = 1/2 CD = a x b x c / 4L
a,b,dan c = sisi-sisi segitiga
L = luas segitiga
Itulah tadi sobat, rumus jari-jari lingkaran luar dan jari-jari lingkaran dalam sebuah segitiga. Jika ada kesulitan, silahkan tuliskan di kolom komentar di bawah. Dengan senang hati, kita akan bantu.
GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN
Garis Singgung Persekutuan Luar Dua Lingkaran
Dua buah lingkaran yang berpusat pada titik O dan P memiliki panjang jari-jari yang berbeda. Panjang jari-jari lingkaran dengan pusat O adalah R, sedangkan panjang jari-jari lingkaran dengan pusat P adalah r. Jarak kedua pusat pada dua lingkaran tersebut adalah OP. Terdapat sebuag garis yang menyinggung kedua lingkaran yaitu garis AB.
Gambar di bawah menunjukkan letak garis AB yang merupakan garis singgung lingkaran pada persekutuan luar dari dua lingkaran.
Garis AB adalah garis singgung lingkaran pada persekutuan luar dua lingkaran. Perhatikan bahwa panjang AB sama dengan panjang PP’. Sehingga dengan menghitung panjang PP’ secara otomatis dapat mengetahui panjang ruas garis AB. Di mana, garis AB merupakan garis singgung persekutuan luar dua lingkaran.
Segitiga PP’O merupakan segitiga siku-siku yang siku-siku di P’. Hubungan ketiga sisi pada segitiga siku-siku memenuhi persamaan pada rumus Pythagoras. Sehingga dapat diperoleh persamaan P’P2 = OP2 ‒ P’O2 dengan P’O = OA ‒ BP = R ‒ r. Atau persamaan dapat juga dibentuk dalam bentuk P’P2 = OP2 ‒ (R ‒ r)2.
Dengan demikian panjang garis singgung lingkaran pada persekutuan luar pada dua lingkaran dapat diperoleh melalui rumus garis singgung persekutuan luar berikut.
Baca Juga: Panjang Busur, Luas Juring, serta Luas Tembereng
Garis Singgung Persekutuan Dalam Dua Lingkaran
Garis singgung persekutuan dalam dua lingkaran juga melibatkan dua buah lingkaran dan sebuah garis singgung, sama seperti pada garis singgung persekutuan luar. Bedanya terletak pada posisi garis singgung lingkaran. Dua titik pada garis singgung persekutuan luar dua lingkaran terletak di sisi yang sama. Sedangkan pada garis singggung persekutuan dalam, dua titik singgung terletak pada sisi yang bersebrangan.
Gambar di bawah menunjukkan posisi garis singgung lingkaran pada persekutuan dalam yang menyinggung dua buah lingkaran.
Perhatikan bahwa segitiga PP’O merupakan segitiga siku-siku yang siku-siku di P’. Hubungan antara P’O, P’P, dan OP dapat sesuai pada rumus Pythagoras yaitu P’P2 = OP2‒ P’O2. Karena PO’ = OA + BP = R + r maka bentuk persamaan dapat juga dinyatakan dalam P’P2 = OP2‒ (R + r)2
Sehingga, rumus garis singgung persekutuan dalam dua lingkaran dapat dinyatakan dalam rumus di bawah.
Baca Juga: Hubungan Sudut Pusat dan Sudut Keliling pada Sebuah Lingkaran
Contoh Soal Garis Singgung Persekutuan Dua Lingkaran dan Pembahasan
Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman terkait bahasan di atas. Setiap soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih!
Contoh 1 – Soal Garis Singgung Persekutuan Luar Dua Lingkaran
Dua buah lingkaran memiliki panjang garis singgung persekutuan luar 24 cm dan jarak kedua titik pusat lingkaran 26 cm. Jika panjang jari-jari lingkaran besar 18 cm, maka panjang jari-jari lingkaran yang lain adalah ….
A. 6 cm
B. 8 cm
C. 9 cm
D. 10 cm
Pembahasan:
Berdasarkan data pada soal, kita dapat peroleh gambar di bawah.
Diketahui bahawa,
- Garis singgung persekutuan luar dua lingkaran: AB = 24 cm
- Jarak keuda pusat lingkaran: OP = 26 cm
- Panjang jari-jari lingkaran besar: OA = 18 cm
- Panjang jari-jari lingkaran kecil: OB = r
Menghitung panjang garis singgung AB:
AB2 = OP2 ‒ (OA ‒ r)2
242 = 262 ‒ (18 ‒ r)2
676 = 576 ‒ ( 18 ‒ r)2
(18 ‒ r)2 = 676 ‒ 576
(18 ‒ r)2 = 100
18 ‒ r = 10
‒r = 10 ‒ 18
‒r = ‒8 → r = 8 cm
Jadi, panjang jari-jari lingkaran yang lain adalah 8 cm.
Jawaban: D
Komentar
Posting Komentar