PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU
Nama : Nabila Nurul Alifah
Kelas : X IPA 1
Absen : 18
PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU
sin, cosinus disingkat cos, tangens disingkat tan, cotangent disingkat cot, secan disingkat sec dan juga cosecan disingkat cosec.
Trigonometri yaitu nilai perbandingan yang kemudian didefinisikan ke koordinat segitiga siku-siku maupun kartesius. Jadi, apabila trigonometri ini didefinisikan sebagai segitiga siku-siku, maka akan didapatkan seperti berikut ini:
Perbandingan Trigonometri Pada Segitiga Siku – Siku
Untuk definisi perbandingan trigonometri sudut siku-siku pertama adalah:
Dan untuk definisi perbandingan trigonometri sudut siku-siku kedua, adalah:
Nilai Perbandingan Trigonometri Untuk Sudut – Sudut Istimewa
Nilai perbandingan memiliki beberapa tabel yang akan memudahkan kamu untuk menemukan hasilnya. Tabel itu sendiri memiliki 2 jenis tabel Istimewa. Ada apa saja? Yuk, perhatikan tabel di bawah ini:
Tabel perbandingan trigonometri sudut istimewa pertama
Tabel perbandingan trigonometri sudut istimewa kedua
Baca juga: Pengertian dan Cara Penyelesaian Pertidaksamaan (Bagian 1)
Perbandingan Sudut dan Sudut Relasi Trinogometri I
Perbandingan sudut dan relasi trigonometri merupakan perluasan dari definisi dasar trigonometri tentang kesebangunan pada segitiga siku-siku yang hanya memenuhi sudut kuadran I dan sudut lancip (0 − 90°). Untuk contohnya kamu bisa perhatikan gambar di bawah ini ya!
Perbandingan Sudut dan Sudut Relasi Trigonometri II
Untuk setiap α lancip, maka (90° + α) dan (180° − α) akan menghasilkan sudut kuadran II. Dalam trigonometri, relasi sudut-sudut tersebut dinyatakan sebagai berikut:
Identitas Trigonometri
Identitas trigonometri adalah kesamaan yang memuat perbandingan trigonometri dari suatu sudut. Sebuah identitas trigonometri dapat ditunjukkan kebenarannya dengan tiga cara. Cara pertama, dimulai dengan menyederhanakan ruas kiri menggunakan identitas sebelumnya sampai menjadi bentuk yang sama dengan ruas kanan. Cara kedua, mengubah dan menyederhanakan ruas kanan sampai menjadi bentuk yang sama dengan ruas kiri. Cara ketiga, mengubah baik ruas kiri maupun ruas kanan ke dalam bentuk yang sama.
Ada beberapa rumus identitas trigonometri yang perlu kamu ketahui seperti:
Komentar
Posting Komentar