Koordinat Cartesius dan Koordinat Kutub

 NAMA: NABILA NURUL ALIFAH

KELAS: X MIPA 1

ABSEN: 17


Koordinat Cartesius dan Koordinat Kutub

Pengertian Koordinat Cartesius

Koordinat cartesius merupakan suatu titik yang digambar pada sumbu X dan sumbu Y yang biasanya ditulis dengan P(x,y). Istilah cartesius sendiri ditemukan oleh ahli matematika dari Perancis yang bernama Rene Descartes. Hasil penemuannya inilah gabungan antara aljabar dan geometri yang kemudian berkembang menjadi ilmu geometri analitik, kalkulus, dan kartografi.

Sistem koordinat cartesius juga bisa digunakan pada dimensi lebih tinggi, misalnya 3 dimensi yang menggunakan sumbu x, y, dan z. Jika pada 2 dimensi digunakan sumbu x dan y, maka sumbu z terletak saling tegak lurus dengan sumbu x dan y.

Pengertian Koordinat Kutub

Koordinat kutub atau koordinat polar merupakan sistem koordinat 2 dimensi, dimana titik bidang ditentukan dari jarak titik yang sudah ditetapkan dan besar sudut ditentukan dari arah yang sudah ditetapkan.

Dari abad ke-8 M, penggunaan koordinat kutub ini dikembangkan untuk menghitung arah dan jarak kiblat dari seluruh penjuru bumi.

Konversi Koordinat Cartesius dan Koordinat Kutub Matematika

Koordinat kartesius suatu titik merupakan posisi suatu titik dalam arah sumbu x dan dalam arah sumbu y terhadap titik asal O (0,0) sebagai titik pusatnya. Koordinat kartesius ditulis dengan notasi titik P (x,y).
Koordinat Kutub (Polar) suatu titik merupakan besarnya jarak suatu titik tertentu P (x,y) terhadap titik asal O (0,0) dan besarnya sudut yang terbentuk oleh garis OP terhadap sumbu x. Koordinat kutub ditulis dengan notasi P (r,α°).
Untuk mengkonversi koordinat kartesius menjadi koordinat kutub dari suatu titik digunakan rumus sebagai berikut.
Koordinat kartesius ----> Koordinat Kutub
                     P (x,y)    ---->  P (r, α°)
dimana: r = √x²+y²
                α = tan^-1 (y/x) atau tan α = y/x
Nilai α dapat ditentukan dengan menggunakan tabel Matematika Sin Cos Tan atau menggunakan kalkulator. 

maka akan muncul hasil berupa angka -36,869... dengan memberikan satuan ° (derajat) bernilai -36,869° atau biasanya ditulis -37°.

Untuk mengkonversi koordinat kutub menjadi koordinat kartesius dari suatu titik digunakan rumus sebagai berikut.
Koordinat Kutub ----> Koordinat kartesius
               P (r, α°)  ---->  P (x,y)
dimana: x = r . Cos α°
                y = r . Sin α°

Contoh Soal Konversi Koordinat:
1. Konversikan koordinat kartesius P (4,-3) menjadi koordinat kutub!
Penyelesaian:
Diketahui:  x = 4 dan y = -3
maka r = √x²+y² = √4²+(-3)² = √25 = 5

           α = tan^-1 (y/x) = tan^-1 (-3/4)
              = -36,69 ° atau -37°
Jadi koordinat kutubnya (5, -37°).
2. Konversikan koordinat kartesius P (6,8) menjadi koordinat kutub!
Penyelesaian:
Diketahui:  x = 6 dan y = 8
maka r = √x²+y² = √6²+8² = √100 = 10

           α = tan^-1 (y/x) = tan^-1 (8/6)
              = 53,13 ° atau 53°
Jadi koordinat kutubnya (10, 53°).

3. Konversikan koordinat kutub P (10,60°) menjadi koordinat kartesius!
Penyelesaian:
Diketahui:  r = 10 dan α = 60°
maka x = r . Cos α = 10 . cos 60°
               = 10 . 1/2= 5
dan    y = r . Sin α = 10 . Sin 60°
               = 10 . 1/2√3= 5√3
Jadi koordinat kartesiusnya (5, 5√3).

4. Konversikan koordinat kutub P (20,53°) menjadi koordinat kartesius!
Penyelesaian:
Diketahui:  r = 20 dan α = 53°
maka x = r . Cos α = 20 . cos 53°
               = 20 . 0,6= 12
dan    y = r . Sin α = 20 . Sin 53°
               = 20 . 0,8 = 16
Jadi koordinat kartesiusnya (12, 16).

5. Tentukan koordinat kutub jika diketahui koordinat kartesius suatu titik A (-2√3, -2) !
Penyelesaian:
Diketahui:  x = -2√3 dan y = -2
maka r = √x²+y² = √(-2√3)²+(-2)²
              = √(4.3)+4 = √12+4 = √16 = 4

           α = tan^-1 (y/x) = tan^-1 (-2/-2√3)
              = tan^-1 (1/√3) = 30°
Jadi koordinat kutubnya (4, 30°).

DAFTAR PUSTAKA
https://siswatekunbelajar.blogspot.com/2019/10/konversi-koordinat-cartesius-dan.html

Komentar

Postingan populer dari blog ini

LUAS SEGITIGA DENGAN TRIGONOMETRI, ATURAN SINUS DAN ATURAN COSINUS

KOMPOSISI FUNGSI DAN INVERS FUNGSI

PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU