SISTEM PERSAMAAN KUADRAT-KUADRAT DAN BEBERAPA CONTOH SOALNYA
Nama : Nabila Nurul Alifah
Kelas : X MIPA 1
Absen : 18
SISTEM PERSAMAAN KUADRAT-KUADRAT DAN BEBERAPA CONTOH SOALNYA
Bentuk umumnya sebagai berikut.
y = ax2 + bx + c ……………. (bagian kuadrat pertama)y = px2 + qx + r ……………. (bagian kuadrat kedua)
Keterangan:*) Variabelnya x dan y*) Koefisiennya a, b, p , q ∈ R*) Konstanta nya r, c ∈ R
Secara umum, untuk memperoleh penyelesaian SPKK dilakukan langkah-langkah sebagai berikut.Langkah 1:Substitusikan bagian kuadrat persamaan pertama ke bagian kuadrat yang kedua atau sebaliknya sehingga diperoleh persamaan kuadrat baru.Langkah 2:Selesaikan persamaan kuadrat baru yang diperoleh pada langkah pertama.Langkah 3:Substitusikan nilai x yang diperoleh pada langkah kedua ke persamaan pertama atau persamaan kedua. Untuk mempermudah perhitungan, silahkan kalian pilih persamaan kuadrat yang lebih sederhana.Contoh penyelesaian:1. Tentukan himpunan penyelesaian SPKK jika diketahui persamaan y = 5x² dan y = 6x² – 7x?
Pembahasan.
Contoh soal sistem persamaan kuadrat kuadrat ini dapat diselesaikan dengan melakukan substitusi y = 5x² ke y = 6x² – 7x. Untuk itu hasilnya akan menjadi:
5x² = 6x² – 7x
6x² – 5x² – 7x = 0
x² – 7x = 0
x(x – 7) = 0
x = 0 atau x = 7
Selanjutnya nilai x di atas disubstitusikan ke persamaan y = 5x². Maka :
Untuk x = 0 → y = 5x²
y = 5(0)²
y = 0
Untuk x = 7 → y = 5x²
y = 5(7)²
y = 245
Jadi himpunan penyelesaian SPKK tersebut ialah {(0, 0), (7, 245)}
2. Diketahui persamaan y = x² dan y = 4x² – 5x. Hitunglah himpunan penyelesaian SPKK tersebut?
Pembahasan
Bagian kuadrat pertama y = x² disubstitusikan ke bagian kuadrat kedua y = 4x² – 5x. Maka hasilnya:
x² = 4x² – 5x
4x² – x² – 5x = 0
3x² – 5x = 0
x(x – 5) = 0
x = 0 atau x = 5
Nilai x = 0 dan x = 5 kemudian disubstitusikan ke kuadrat bagian pertama y = x². Sehingga,
Untuk x = 0 → y = x²
y = 0²
y = 0
Untuk x = 5 → y = x²
y = 5²
y = 25
Jadi himpunan penyelesaian SPKK tersebut ialah {(0, 0), (5, 25)}
1. Tentukan himpunan penyelesaian SPKK jika diketahui persamaan y = 5x² dan y = 6x² – 7x?
Pembahasan.
Contoh soal sistem persamaan kuadrat kuadrat ini dapat diselesaikan dengan melakukan substitusi y = 5x² ke y = 6x² – 7x. Untuk itu hasilnya akan menjadi:
5x² = 6x² – 7x
6x² – 5x² – 7x = 0
x² – 7x = 0
x(x – 7) = 0
x = 0 atau x = 7
Selanjutnya nilai x di atas disubstitusikan ke persamaan y = 5x². Maka :
Untuk x = 0 → y = 5x²
y = 5(0)²
y = 0
Untuk x = 7 → y = 5x²
y = 5(7)²
y = 245
Jadi himpunan penyelesaian SPKK tersebut ialah {(0, 0), (7, 245)}
2. Diketahui persamaan y = x² dan y = 4x² – 5x. Hitunglah himpunan penyelesaian SPKK tersebut?
Pembahasan
Bagian kuadrat pertama y = x² disubstitusikan ke bagian kuadrat kedua y = 4x² – 5x. Maka hasilnya:
x² = 4x² – 5x
4x² – x² – 5x = 0
3x² – 5x = 0
x(x – 5) = 0
x = 0 atau x = 5
Nilai x = 0 dan x = 5 kemudian disubstitusikan ke kuadrat bagian pertama y = x². Sehingga,
Untuk x = 0 → y = x²
y = 0²
y = 0
Untuk x = 5 → y = x²
y = 5²
y = 25
Jadi himpunan penyelesaian SPKK tersebut ialah {(0, 0), (5, 25)}
Komentar
Posting Komentar