Postingan

Menampilkan postingan dari Januari, 2022

Koordinat Cartesius dan Koordinat Kutub

 NAMA: NABILA NURUL ALIFAH KELAS: X MIPA 1 ABSEN: 17 Koordinat Cartesius dan Koordinat Kutub Pengertian Koordinat Cartesius Koordinat cartesius merupakan suatu titik yang digambar pada sumbu X dan sumbu Y yang biasanya ditulis dengan P(x,y). Istilah cartesius sendiri ditemukan oleh ahli matematika dari Perancis yang bernama Rene Descartes. Hasil penemuannya inilah gabungan antara  aljabar  dan geometri yang kemudian berkembang menjadi ilmu geometri analitik, kalkulus, dan kartografi. Sistem koordinat cartesius juga bisa digunakan pada dimensi lebih tinggi, misalnya  3 dimensi  yang menggunakan sumbu x, y, dan z. Jika pada 2 dimensi digunakan sumbu x dan y, maka sumbu z terletak saling tegak lurus dengan sumbu x dan y. Pengertian Koordinat Kutub Koordinat kutub atau koordinat polar merupakan sistem koordinat 2 dimensi, dimana titik bidang ditentukan dari jarak titik yang sudah ditetapkan dan besar sudut ditentukan dari arah yang sudah ditetapkan. Dari abad ke-8 M, penggunaan koordinat k

IDENTITAS TRIGONOMETRI

Gambar
NAMA: NABILA NURUL ALIFAH KELAS: X MIPA 1 ABSEN: 17 IDENTITAS TRIGONOMETRI   Identitas trigonometri merupakan suatu relasi atau kalimat terbuka yang di dalamnya memuat fungsi-fungsi trigonometri. Dimana bernilai benar untuk tiap penggantian variabel dengan konstan anggota domain fungsi. Kebenaran akan suatu relasi atau kalimat terbuka itu sendiri adalah identitas yang harus dibuktikan kebenarannya. Ada beberapa pilihan yang bisa digunakan sebagai pembuktikan identitas. Adapun pilihan tersebut ialah menggunakan rumus-rumus atau identitas-identitas yang sudah dibuktikan kebenarannya. Fungsi trigonometri itu sendiri terdiri atas sin, cos, tan, cosec, sec, serta cotan. Fungsi trigonometri ini bisa digunakan untuk menentukan sisi sebuah segitiga ataupun sudut yang dibentuk dari dua buah sisi yang ada di dalam sebuah segitiga. Aplikasi ilmu trigonometri ini diterapkan dalam bidang astronomi, ekonomi, medical, teknik, geografi, elektronik, dan masih banyak lainnya. Sebuah segitiga s

SISTEM PERTIDAKSAMAAN KUADRAT-KUADRAT DAN BEBERAPA CONTOH SOALNYA

Gambar
NAMA: NABILA NURUL ALIFAH KELAS: X MIPA 1 ABSEN: 17 hampir sama dengan persamaan kuadrat, Berikut ini adalah penjelasan lengkap mengenai pertidaksamaan yang meliputi bentuk umum serta langkah-langkah penyelesaian pertidaksamaan kuarat beserta contoh soal, Untuk lebih jelasnya simak pembahasan dibawah ini Pertidaksamaan Kuadrat Bentuk umum pertidaksamaan kuadrat adalah sebagai berikut : ax² + bx + c > 0 ax² + bx + c ≥ 0 ax² + bx + c < 0 ax² + bx + c ≤ 0 a, b, c bilangan real dan a ≠ 0. Langkah-Langkah Penyelesaian Himpunan Penyelesaian pertidaksamaan kuadrat bisa ditentukan dengan langkah-langkah sebagai berikut yang dijelaska dibawah ini : Langkah 1 Tentukanlah pembuat nol dengan cara merubah tanda pertidaksamaan hingga menjadi “sama dengan”. Akar-akar persamaan kuadrat yang didapat yaitu pembuat nol. x2 + x – 6 = 0 ,difaktorkan menjadi (x +3)(x-2) = 0 Pembuat nol dari persamaan tersebut bisa dicari dengan memakai cara ini.. Pertama gunakan : x + 3 = 0 x = -3 Kedua kita gunakan :

SOAL KONTEKSTUAL BERKAITAN PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU, SUDUT ELEVASI DAN SUDUT DEPRESI

Gambar
 NAMA: NABILA NURUL ALIFAH KELAS: X MIPA 1 ABSEN: 17 SOAL KONTEKSTUAL BERKAITAN PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU, SUDUT ELEVASI DAN SUDUT DEPRESI Apakah sudut elevasi dan sudut depresi itu? Untuk mengetahui definisi kedua macam sudut tersebut, perhatikan ilustrasi berikut. Sudut Elevasi  adalah sudut yang terbentuk oleh garis horizontal dengan mata pengamat dengan arah pandang ke atas. Sudut Depresi  adalah sudut yang terbentuk oleh garis horizontal dengan mata pengamat dengan arah pandang ke bawah. Masalah Kontekstual mengenai Sudut Elevasi dan Sudut Depresi Sebuah pohon berjarak 130 meter dari seorang pengamat dengan tinggi mata pengamat dari tanah adalah 168 cm. Apabila sudut elevasi yang terbentuk adalah 60° dari mata pengamat ke pucuk pohon, maka tinggi pohon tercebut adalah …. Jawab: Agar mudah dalam menyelesaikan masalah di atas, kita harus mampu mentransformasi setiap kalimat dari perrnyataan di atas dalam sebuah gambaran.   Dik: Jarak pengamat ke pohon: 130 me